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Problems of unsteady or transient filtration of a liquid or gas through
a porous medium [1] reduce to a nonlinear differential equation as
follows
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In particular we have for the case of isothermal gas motion and motion

of subterranean water the equation
ou _ 0 (a=52)
Bt =% 922 2= 2mp
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In this expression u(x, t) is the gas density of the subterranean
water head, m» is the porosity of the subsoil, % is the permeability of
the porous terrain, and p is the viscosity of the gas.

Boundary problems are of interest in which gas density or pressure is
known at the boundary of the strata, or the head acting on the subterran-
ean water. This leads us to boundary conditions of the following kind

% (0, )= F ()

If the flow of gas or underground water is given at the boundaries,
the following boundary conditions accrue

99 (0, ¢ 99 (L, 1)
Tox = h T
According to the sense of the problem F(t) > 0, Fl(t) <o, Fz(t) > 0.
The derivative a¢<u)/a, (gas flow) is a continuous function. Equations
(0.1) and (0.2) are dealt with in [2-4]. The problems of numerical solu-
tion of equations of the type (0.1), (0.2) where the initial and the

271



278 V.F. Baklanovskaia

boundary problems are strictly positive are dealt with in [5-7]. In our
present work results are given of calculations of several actual prob-
lems on the BESN-2 computer at the Computing Centre of the Academy of
Sciences.

1. The order of Equation (0.1) depemds on the value of the fumction
u{x, t); when u > 0 it is a second order parabolic equation, when a = 0
it degenerates into a first order equation. Self-similar solutions of
Equation (0.1) are comstructed in [2], and these have a break at the
abscissae depending on time, at which du/dx undergoes a fimite or in-
finite jump. For this reason the function a(x, t) will not evince the
smoothness prescribed by the equation at these points, and in fact, it
will be a generalized solution. It is indeed the break point (discon-
tinuity) which gives rise to the main difficulties of numerical solution
and is the deciding factor as regards choice of method. Difference
methods, built up without regard to this peculiarity of the solution,
can, in some cases, give a qualitatively incorrect result. The existence
and uniqueness of a solution of (0.1) for the case of degeneration are
deslt with in [38]. In [8-10] problems concerning the fundamentals and
methods of numerical calculation of a gemeral solutionm to (0.1) are
studied. The Cauchy problem is studied, and also the first and second
boundary problems for § <x< o and 0 < x < . Analysis demonstrates that
for numerical calculation of (0.1) it is convenient to adopt the
*explicit® scheme, i.e. to replace (0.1) by the following difference
anslogue

Ugppy == Ui T ');_‘f [P (i 10) — 20 (ug) + @ (v_yy)] @.1)

where h, r are respectively the pitches (or steps) in the spatiasl and

the time coordinates. The approximate solution obtained from (1.1) shares
the main features of the accurate one; it is non-pegative, it is limited
(or bounded) (that is it does not exceed the maximum value of the inftial
and the boundary function); it approaches the accurate solution as the
step is indefinitely decreased.

2. The problem mow dealt with is that of the filtration of & semi in-
finite stratum: 0 < x < oo. The distribution of head satisfies Equation
(0.2). The initial amd boundary problems are as follows

Ulg =0, uly=at—b (@0, 5>0) @1

The bowndary comdition corresponds to the head at the boundary which
varies nonmonotonically; at first the head imcreases, then it decays.
Thus the liquid first of all penetrates the stratum, and then it begins
to flow out of it. It is of interest to determine the instant of time ¢,
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when liquid begins to flow out of the stratum, i.e. when the derivative
a.’u/a,’ vanishes when x = 0. The calculation was done by the difference
method (1.1). Figures 1 and 2 give graphical solutions with boundary con-
ditions of the type (2.1) with a=1/2, =1 and e= 1/2, b= 1/4 for
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Pig. 1. Fig. 2.

various times t (instant t is indicated at the side of the curve to which
it applies). The table gives values of the solution to problem (0.2) to
(2.1) for a= 1/2, b = 1/4. The graphs show that ipstant t, equals 0.37
and 1,47 for the cases a= 1/2, b =1 and a= 1/2, & = 1/4 respectively.
Instant t;, when z is a maximum for x = 0 equals 0.25 and 1.00 respec-
tively. It is evident that in both cases ty > t;.

3. In the isothermal gas filtration problem in s semi-infinite
stratum (0 < x < =), when the gas pressure at the boundary is such that
when t +» o the solution attains a self-similar regime, it is interesting
to try and calculate so as to analyse the velocity with which the self-
similarity regime is attainmed.

Suppose the imitial and boundary functions are as follows

ul_, =0, Uy = otP+ 6 (t) >0 (3.1)

In this expression,al(t) is such that

limoy (2) /tP=0 when t— oo

It has been shown in [2] that when 03(t) = 0 the solution to problem
(0.2) to (3.1) is self similar, {i.e.

x
a (xz,t) = otP f (), §=T/_G——F+T
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TABLE OF VALUES OF u(z, t) x 10%

0.077 0.157 § 0.250 [ 0.447 | 0.608 0.936 1.19 1.41 1.46 1.48 1.53
x

0.000| 370 | 724 | 1094 | 1736 | 2225 | 2490 | 2410 | 2073 | 1958 | 1904 | 1803
0.025] 248 | 608 | 983 | 1637 | 2142 | 2427 | 2372 ] 20641 1958 | 1908 | 1814
0.0501 126 | 490 | 871 | 1537 | 2057 | 2364 { 23331 20531 1955 | 4908 | 1821
0.075] 23 | 373 | 759 | 1437 | 1974 | 2299 | 2292 | 2039 | 1948 | 1905 | 1824
0.100 254 | 646 | 1336 | 1885 | 2233 | 2249 | 2022 | 1938 | 1889 | 1824
0.125 136 | 533 | 1234 | 1798 | 2166 | 2205 | 2003 | 1926 | 1889 | 1820
0.150 29 | 419 | 1132 [ 1710 | 2098 | 2160 | 1981 | 1911 | 1877 | 1813
0.175 1 | 305 | 1029 | 1622 | 2029 | 2113 | 1957 | 1893 | 1862 | 1803
0.200 190 | 926 | 1532 | 1956 | 2064 | 1932 | 1873 | 1845 | 1790
0.225 73| 822 | 1442 | 1888 | 2014 1904 | 4851 | 1825 | 1775
0.250 6| 717 | 1352 | 1816 | 1963 | 1874 1826 | 1803 | 1758
0.275 612 | 1260 | 1744 | 1911 ] 1842 | 1800 | 1779 | 1738
0.300 506 | 1168 | 1670 | 1857 | 1808 | 1771 | 1752 | 1715
0.325 400 | 1075 | 1595 | 1802 | 1773 | 1741 | 1724 | 1691
0.350 203 | 982 | 1520 { 1746 | 1736 | 1709 | 1694 | 1665
0.375 186 | 888 | 1443 | 1668 | 1697 | 1675 | 1662 | 1637
0.400 77 | 793 | 1366 | 1630 | 1857 | 1639 | 1629 | 1607
0.425 7 697 | 12881 1570 ] 1615 1602 | 1593 | 1575
0.450 601 | 1208 | 1509 | 1572 1 1563 | 1556 | 1541
0.475 505 | 1129 | 1447 ¢ 1527 | 1522 | 1548 | 1506
0.500 407 | 1049 | 1384 | 1481 | 1481 | 1478 | 1469
0.525 309 | 967 | 1320 | 1434 | 1437 | 1436 | 1431
0.550 210 | 885 | 1255 | 1386 | 1393 | 1393 | 1391
0.575 111 ] 802 ) 189 1336 | 1347 | 1349 | 1349
0.600 22| 719 1221 4285 | 1299 | 1303 | 1307
0.625 634 | 1054 | (232 | 1251 | 1256 | 1263
0.650 549 | 9861 1179 | 1201 | 1208 | 1217
0.675 463 916 | 1124 | 1150 | 1159 | 1171
0.700 377 845 | 1068 | 1098 | 1108 | 1123
0.725 289 7741 1012 | 1044 | 1056 | 1074
0.750 201 701 954 | 990 | 1003 | 1023
0.775 112 628 895 934 | 949 | 972
0.800 28 554 835 878 | 894 | 819
0.825 1] 4790 774| 820 838 | 866
0.850 403 712 761 | 780 | 811
0.875 326 649 702 | 722 | 755
0.900 249 585 641 | 663 | 698
0.925 171 520 579 | 602 | 840
0.950 911 4541 517 | 541 | 581
0.975 20 388 453 | 479 | 321
1.000 ¢ 320 380 | 416 | 460
1.025 252 323 | 352 | 399
1.050 182 257 | 287 | 338
1.075 112 190 | 221 | 272
1.100 41 122 1 154 | 208
1.125 3 52 86 | 14z
1.150 5 22 76
1.175 16
1.

0
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A point £ exists such that
F(EY>0 when E<Es F(E)=0  when >&o

to which the following apply
w(z, £)>0 gnen T>>Eo V otP, u=0 ghenz>tV atPH

With the elapse of time the point z, = {4V o tP*1 poves to the right
along the abscissa and it becomes rather difficult to work out a
practical solution for fairly high values of ¢ close to x,(t). Because
the solution to problem (0.2) to (3.1) attains the self-similar regime
when t » o [9], i.e.

.oz, f)
lim 0 =6f(E) whent— oo
there is good reason to go over to moving *self-similar* coordinates, in
which the solution at fairly high values of t hardly varies., Thus the
following transformation of variables is convenient
u x

= . ey —————— =] 3.
e S ymeSse 1=hmedn 32)

With this transformation we have

limp (§, 1) =/(!) when N oo

and this is very conveniemt for practical calculation at high values of

t. It is evident from Formula (3.2) that ¢ = 7 — 1, i.,e. for comparative-
1y small values of 7 the time ¢t is already great., (The shift along the ¢
axis in the Pormulas (3.2) is carried out for convenience of calculation
close to the point t = 0). On changing variables (3.2) problem (0.2) to
(3.1) transforms into the boundary problem

Op 9% p+1. 3dp

on =@ + 3 L O<SE<oe, 0K 1< 00, p>0) (3.3)
P=0 whenn=0, p=c(l—¢"P+a(m)e™ shent=0 (3.4

Here the derivative dp/d{ is discontinuous, and this involves
further difficulties for approximating it by finite difference. In the
first place the error of the approximation of replacing dp/d¢ by s
finite difference at & point where dp/d{ has a break does not tend to
zero with indefinite decrease in the step. Further analysis is essential
(for instance consult [9]) for a proof of convergence betweem a5 differ-
ence solution and the accurate one. Purthermore it has been shown by
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calculation that the derivative 8p/¢9€ cannot be approximated, for in-
stance by s central difference for them the explicit scheme becomes un-
stable (starting at fairly low values of Pip 1.e. close to the discon-
tinnity point fo, the graph of the solution oscillates about the axis

and rapidly goes out of hand). Further, the implicit scheme is stable,

but the approximate solution obtained oscillates about the abscissa and
takes on negative values which has & qualitative effect on the solution.
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Tvo methods of approximating dp/9 ¢ are proposed inm {o].

The first method consists in replacing dp/d¢ by a *right-hand side
difference® so that the differenmce solutiorm p,, is determiped from the
formula

. p+1 =
Piker = P (1 — PO +4T (Pip — P) 53— + 77 (Phoe— 20% + Pl

Pig =0,  pox=0(1 —e ¥ )P p o (2{hT)) HP" (3.5

Solution (3.5) is stable, it approaches (converges with) the accurate
one when h-+ 0 if the step in time r satisfies the condition that r < Ahz,
where A is a definite (determined) constant.

The second way of replacing (3.3) by a difference equation consists
in bringing (3.3) into the form

dp  3%p? (% 9 p+1§<?,g>
9%

L= o8z PP \3L=31 — 2 (3.6)

and the expression dp/0L is approximated by an oblique difference,

Equation (3.8) can be solved in a manner analogous to (1.1) with the
difference only that the correspondence between the points of the
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solution for 7 =7, and § = 7, + r is taken along direction L, depending
on £

_—2

P+1E

Such a "slanted* arrangement of points of the solution for 5 =-7, and
7 =17, + f corresponds to a straight line in the first system of coordi-
nates. When £ = 0 the angle (L, &) is equal to 7/2 so that the boundary
condition is given accurately. The difference scheme is as follows

tan(L, ¥) =

Piksy = [Pisyarn @+ Py (1 —a)] (1 —pr) + (3.7)

T
+ e — 207 1x Py )+ 4 — P vk — 2Py ke + Pyl

s . S

The difference solution obtained from (3.5) and (3.7) is bounded, has
a finite number of regions where it is monotonic for fixed value of & and
embodies a finite velocity of disturbance propagation.

It is demomstrated in [9] that the order of error im (3.5) 1s O(Vﬁh).
It is easy to see that the order of error of (3.7) is less because in
this case the term dp/d ¢ is absent. Pigures 3 and 4 show graphs of
calculations of problem (0.2) to (3.1) for oy =1, o-=-1/4, 2, p=-1. 1t
is evident that a rapid change takes place from one self-similar solution
to the other.
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